![Pattern Recognition - Chapter 6: Bayesian parameter estimation](https://static.wixstatic.com/media/64c52b_5feb6e8c1543494d809de689ac98eebe~mv2.png/v1/fill/w_233,h_53,fp_0.50_0.50,q_95,enc_auto/64c52b_5feb6e8c1543494d809de689ac98eebe~mv2.webp)
Pattern Recognition - Chapter 6: Bayesian parameter estimation
1. Introduce Bayesian parameter estimation (Maximum-A-posterior) 2. An example 2.1. The pre-observation 2.2. The post-observation...
![Review on Pattern Recognition Chapter 5: Maximum-Likelihood estimation](https://static.wixstatic.com/media/64c52b_60ab5a00b7924f028699cd299e4d320c~mv2.png/v1/fill/w_319,h_240,fp_0.50_0.50,q_95,enc_auto/64c52b_60ab5a00b7924f028699cd299e4d320c~mv2.webp)
Review on Pattern Recognition Chapter 5: Maximum-Likelihood estimation
Chapter 5 is very complicated to understand. That is why I publish this blog to summarize the knowledge in the Chapter 5. Basically, we...
![Pattern Recognition - Chapter 5: Maximum-Likelihood estimation](https://static.wixstatic.com/media/64c52b_10358f0e7717439dae70543ec3eb23ec~mv2.png/v1/fill/w_319,h_240,fp_0.50_0.50,q_95,enc_auto/64c52b_10358f0e7717439dae70543ec3eb23ec~mv2.webp)
Pattern Recognition - Chapter 5: Maximum-Likelihood estimation
1. Maximum-Likelihood estimate (MLE) Equation (1) (*Source: Richard O.Duda et al. Pattern Recognition) Equation (2) Equation (3) 2. MLE...
![Pattern Recognition - Chapter 4: Discriminant function with Gaussian distribution](https://static.wixstatic.com/media/64c52b_ff33de8073604b26ad1c0deb5ac4f2cb~mv2.png/v1/fill/w_319,h_213,fp_0.50_0.50,q_95,enc_auto/64c52b_ff33de8073604b26ad1c0deb5ac4f2cb~mv2.webp)
Pattern Recognition - Chapter 4: Discriminant function with Gaussian distribution
Equation (1) 1. Independent features with the same (common) covariance (*Source: Tso B. and Mather P. Classification Methods for Remotely...
![Pattern Recognition - Chapter 3: Bayes decision rule](https://static.wixstatic.com/media/64c52b_74d426446194451eacc4eddccae0454b~mv2.png/v1/fill/w_319,h_240,fp_0.50_0.50,q_95,enc_auto/64c52b_74d426446194451eacc4eddccae0454b~mv2.webp)
Pattern Recognition - Chapter 3: Bayes decision rule
(*Source: Richard O.Duda et al. Pattern Recognition) 1. Bayes decision rule 1.1. Risk function 1.1.1. Simple cost function (*Source:...
![Pattern Recognition - Chapter 2: Normal distribution](https://static.wixstatic.com/media/64c52b_28bdbf6558794c09808d78d66fd9ee94~mv2.png/v1/fill/w_233,h_233,fp_0.50_0.50,q_95,enc_auto/64c52b_28bdbf6558794c09808d78d66fd9ee94~mv2.webp)
Pattern Recognition - Chapter 2: Normal distribution
1. Normal distribution (*Source: https://en.wikipedia.org/wiki/Normal_distribution) 2. Multivariate normal densities (*Source:...
![](https://static.wixstatic.com/media/64c52b_964517a8de20467e8cf341d6a51df47e~mv2.jpg/v1/fill/w_250,h_250,fp_0.50_0.50,q_30,blur_30,enc_auto/64c52b_964517a8de20467e8cf341d6a51df47e~mv2.webp)
![Pattern Recognition - Chapter 1: Basic probability theory](https://static.wixstatic.com/media/64c52b_964517a8de20467e8cf341d6a51df47e~mv2.jpg/v1/fill/w_319,h_240,fp_0.50_0.50,q_90,enc_auto/64c52b_964517a8de20467e8cf341d6a51df47e~mv2.webp)
Pattern Recognition - Chapter 1: Basic probability theory
1. Discrete - Continuous random variable 1.1. Discrete random variable 1.2. Continuous random variable 2. Statistical independence 2.1....